Papers
Topics
Authors
Recent
2000 character limit reached

GSID: Generative Semantic Indexing for E-Commerce Product Understanding (2509.23860v1)

Published 28 Sep 2025 in cs.IR and cs.AI

Abstract: Structured representation of product information is a major bottleneck for the efficiency of e-commerce platforms, especially in second-hand ecommerce platforms. Currently, most product information are organized based on manually curated product categories and attributes, which often fail to adequately cover long-tail products and do not align well with buyer preference. To address these problems, we propose \textbf{G}enerative \textbf{S}emantic \textbf{I}n\textbf{D}exings (GSID), a data-driven approach to generate product structured representations. GSID consists of two key components: (1) Pre-training on unstructured product metadata to learn in-domain semantic embeddings, and (2) Generating more effective semantic codes tailored for downstream product-centric applications. Extensive experiments are conducted to validate the effectiveness of GSID, and it has been successfully deployed on the real-world e-commerce platform, achieving promising results on product understanding and other downstream tasks.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.