Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Specific Emitter Identification via Collision-Alleviated Signal Hash (2509.23807v1)

Published 28 Sep 2025 in eess.SP

Abstract: Specific Emitter Identification (SEI) has been widely studied, aiming to distinguish signals from different emitters given training samples from those emitters. However, real-world scenarios often require identifying signals from novel emitters previously unseen. Since these novel emitters only have a few or no prior samples, existing models struggle to identify signals from novel emitters online and tend to bias toward the distribution of seen emitters. To address these challenges, we propose the Online Specific Emitter Identification (OSEI) task, comprising both online \revise{few-shot and generalized zero-shot} learning tasks. It requires constructing models using signal samples from seen emitters and then identifying new samples from seen and novel emitters online during inference. We propose a novel hash-based model, Collision-Alleviated Signal Hash (CASH), providing a unified approach for addressing the OSEI task. The CASH operates in two steps: in the seen emitters identifying step, a signal encoder and a seen emitters identifier determine whether the signal sample is from seen emitters, mitigating the model from biasing toward seen emitters distribution. In the signal hash coding step, an online signal hasher assigns a hash code to each signal sample, identifying its specific emitter. Experimental results on real-world signal datasets (i.e., ADSB and ORACLE) demonstrate that our method accurately identifies signals from both seen and novel emitters online. This model outperforms existing methods by a minimum of 6.08\% and 8.55\% in accuracy for the few-shot and \revise{generalized zero-shot learning }tasks, respectively. The code will be open-sourced at \href{https://github.com/IntelliSensing/OSEI-CASH}{https://github.com/IntelliSensing/OSEI-CASH}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.