Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Open-DeBias: Toward Mitigating Open-Set Bias in Language Models (2509.23805v1)

Published 28 Sep 2025 in cs.CL

Abstract: LLMs have achieved remarkable success on question answering (QA) tasks, yet they often encode harmful biases that compromise fairness and trustworthiness. Most existing bias mitigation approaches are restricted to predefined categories, limiting their ability to address novel or context-specific emergent biases. To bridge this gap, we tackle the novel problem of open-set bias detection and mitigation in text-based QA. We introduce OpenBiasBench, a comprehensive benchmark designed to evaluate biases across a wide range of categories and subgroups, encompassing both known and previously unseen biases. Additionally, we propose Open-DeBias, a novel, data-efficient, and parameter-efficient debiasing method that leverages adapter modules to mitigate existing social and stereotypical biases while generalizing to unseen ones. Compared to the state-of-the-art BMBI method, Open-DeBias improves QA accuracy on BBQ dataset by nearly $48\%$ on ambiguous subsets and $6\%$ on disambiguated ones, using adapters fine-tuned on just a small fraction of the training data. Remarkably, the same adapters, in a zero-shot transfer to Korean BBQ, achieve $84\%$ accuracy, demonstrating robust language-agnostic generalization. Through extensive evaluation, we also validate the effectiveness of Open-DeBias across a broad range of NLP tasks, including StereoSet and CrowS-Pairs, highlighting its robustness, multilingual strength, and suitability for general-purpose, open-domain bias mitigation. The project page is available at: https://sites.google.com/view/open-debias25

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.