Transformer Tafsir at QIAS 2025 Shared Task: Hybrid Retrieval-Augmented Generation for Islamic Knowledge Question Answering (2509.23793v1)
Abstract: This paper presents our submission to the QIAS 2025 shared task on Islamic knowledge understanding and reasoning. We developed a hybrid retrieval-augmented generation (RAG) system that combines sparse and dense retrieval methods with cross-encoder reranking to improve LLM performance. Our three-stage pipeline incorporates BM25 for initial retrieval, a dense embedding retrieval model for semantic matching, and cross-encoder reranking for precise content retrieval. We evaluate our approach on both subtasks using two LLMs, Fanar and Mistral, demonstrating that the proposed RAG pipeline enhances performance across both, with accuracy improvements up to 25%, depending on the task and model configuration. Our best configuration is achieved with Fanar, yielding accuracy scores of 45% in Subtask 1 and 80% in Subtask 2.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.