Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

GRS-SLAM3R: Real-Time Dense SLAM with Gated Recurrent State (2509.23737v1)

Published 28 Sep 2025 in cs.CV and cs.RO

Abstract: DUSt3R-based end-to-end scene reconstruction has recently shown promising results in dense visual SLAM. However, most existing methods only use image pairs to estimate pointmaps, overlooking spatial memory and global consistency.To this end, we introduce GRS-SLAM3R, an end-to-end SLAM framework for dense scene reconstruction and pose estimation from RGB images without any prior knowledge of the scene or camera parameters. Unlike existing DUSt3R-based frameworks, which operate on all image pairs and predict per-pair point maps in local coordinate frames, our method supports sequentialized input and incrementally estimates metric-scale point clouds in the global coordinate. In order to improve consistent spatial correlation, we use a latent state for spatial memory and design a transformer-based gated update module to reset and update the spatial memory that continuously aggregates and tracks relevant 3D information across frames. Furthermore, we partition the scene into submaps, apply local alignment within each submap, and register all submaps into a common world frame using relative constraints, producing a globally consistent map. Experiments on various datasets show that our framework achieves superior reconstruction accuracy while maintaining real-time performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 5 likes.