Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AdaPtis: Reducing Pipeline Bubbles with Adaptive Pipeline Parallelism on Heterogeneous Models (2509.23722v1)

Published 28 Sep 2025 in cs.DC and cs.AI

Abstract: Pipeline parallelism is widely used to train LLMs. However, increasing heterogeneity in model architectures exacerbates pipeline bubbles, thereby reducing training efficiency. Existing approaches overlook the co-optimization of model partition, model placement, and workload scheduling, resulting in limited efficiency improvement or even performance degradation. To respond, we propose AdaPtis, an LLM training system that supports adaptive pipeline parallelism. First, we develop a pipeline performance model to accurately estimate training throughput. Second, AdaPtis jointly optimizes model partition, model placement, and workload scheduling policies guided by this performance model. Third, we design a unified pipeline executor that efficiently supports the execution of diverse pipeline strategies. Extensive experiments show that AdaPtis achieves an average speedup of 1.42x (up to 2.14x) over Megatron-LM I-1F1B across various LLM architectures and scales.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.