Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

StrucADT: Generating Structure-controlled 3D Point Clouds with Adjacency Diffusion Transformer (2509.23709v1)

Published 28 Sep 2025 in cs.GR, cs.CV, and cs.LG

Abstract: In the field of 3D point cloud generation, numerous 3D generative models have demonstrated the ability to generate diverse and realistic 3D shapes. However, the majority of these approaches struggle to generate controllable 3D point cloud shapes that meet user-specific requirements, hindering the large-scale application of 3D point cloud generation. To address the challenge of lacking control in 3D point cloud generation, we are the first to propose controlling the generation of point clouds by shape structures that comprise part existences and part adjacency relationships. We manually annotate the adjacency relationships between the segmented parts of point cloud shapes, thereby constructing a StructureGraph representation. Based on this StructureGraph representation, we introduce StrucADT, a novel structure-controllable point cloud generation model, which consists of StructureGraphNet module to extract structure-aware latent features, cCNF Prior module to learn the distribution of the latent features controlled by the part adjacency, and Diffusion Transformer module conditioned on the latent features and part adjacency to generate structure-consistent point cloud shapes. Experimental results demonstrate that our structure-controllable 3D point cloud generation method produces high-quality and diverse point cloud shapes, enabling the generation of controllable point clouds based on user-specified shape structures and achieving state-of-the-art performance in controllable point cloud generation on the ShapeNet dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.