Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TF-Bench: Evaluating Program Semantics Reasoning with Type Inference in System F (2509.23686v1)

Published 28 Sep 2025 in cs.CL, cs.PL, and cs.SE

Abstract: LLMs are increasingly integrated into the software engineering ecosystem. Their test-time compute (TTC) reasoning capabilities show significant potential for understanding program logic and semantics beyond mere token recognition. However, current benchmarks for code reasoning lack a formal, program-centric deductive framework to ensure sound evaluation, and are incapable of assessing whether models genuinely reason about program semantics or merely exploit superficial associations between natural language and code tokens. To bridge this gap, we introduce TF-Bench, a benchmark designed to evaluate LLM reasoning based on type inference in System F, a task we refer to as program semantics reasoning. By employing verified transformations to remove semantically irrelevant natural language, we construct TF-Bench_pure, a purely semantics-driven variant of TF-Bench. Our analysis reveals substantial limitations in state-of-the-art LLMs, with the best-performing LLM (Claude-3.7-sonnet) achieving only 55.85% accuracy on TF-Bench_pure. Additionally, we propose two novel metrics to assess robustness and the effectiveness of test-time reasoning, underscoring critical limitations in current LLM capabilities and highlighting essential directions for future research.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.