Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Towards a Comprehensive Scaling Law of Mixture-of-Experts (2509.23678v1)

Published 28 Sep 2025 in cs.LG, cs.AI, and cs.CL

Abstract: Mixture-of-Experts (MoE) models have become the consensus approach for enabling parameter-efficient scaling and cost-effective deployment in LLMs. However, existing scaling laws for dense models are inapplicable to MoE models, which stems from three critical challenges: the multiplicity of influencing factors, their intricate coupling relationships and the non-monotonic nature of their performance impacts. They collectively necessitate a fine-grained investigation into MoE-specific scaling laws. In this work, we perform a systematic decomposition of MoE settings, identifying five key factors that influence model performance from both size and structural perspectives (data size ($D$), total model size ($N$), activated model size ($N_a$), number of active experts ($G$) and the ratio of shared experts ($S$)). Specifically, we design $446$ controlled experiments to characterize their marginal effects, ultimately constructing a comprehensive and precise joint MoE scaling law that considers all essential factors. Furthermore, we derive the theoretically optimal and practically efficiency-aware optimal configurations for $G$, $S$ and $N_a/N$ with detailed analyses. Our results demonstrate that the optimal settings for $G$ and $S$ are independent of both the model architecture and data size. With the scaling of $N$, the optimal activation parameter ratio of $N_a/N$ becomes sparser. Our proposed MoE scaling law could function as an accurate and insightful guidance to facilitate future MoE model design and training.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: