Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

StolenLoRA: Exploring LoRA Extraction Attacks via Synthetic Data (2509.23594v1)

Published 28 Sep 2025 in cs.CR and cs.CV

Abstract: Parameter-Efficient Fine-Tuning (PEFT) methods like LoRA have transformed vision model adaptation, enabling the rapid deployment of customized models. However, the compactness of LoRA adaptations introduces new safety concerns, particularly their vulnerability to model extraction attacks. This paper introduces a new focus of model extraction attacks named LoRA extraction that extracts LoRA-adaptive models based on a public pre-trained model. We then propose a novel extraction method called StolenLoRA which trains a substitute model to extract the functionality of a LoRA-adapted model using synthetic data. StolenLoRA leverages a LLM to craft effective prompts for data generation, and it incorporates a Disagreement-based Semi-supervised Learning (DSL) strategy to maximize information gain from limited queries. Our experiments demonstrate the effectiveness of StolenLoRA, achieving up to a 96.60% attack success rate with only 10k queries, even in cross-backbone scenarios where the attacker and victim models utilize different pre-trained backbones. These findings reveal the specific vulnerability of LoRA-adapted models to this type of extraction and underscore the urgent need for robust defense mechanisms tailored to PEFT methods. We also explore a preliminary defense strategy based on diversified LoRA deployments, highlighting its potential to mitigate such attacks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube