Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Detecting YouTube Scam Videos via Multimodal Signals and Policy Reasoning (2509.23418v1)

Published 27 Sep 2025 in cs.CR

Abstract: YouTube has emerged as a dominant platform for both information dissemination and entertainment. However, its vast accessibility has also made it a target for scammers, who frequently upload deceptive or malicious content. Prior research has documented a range of scam types, and detection approaches rely primarily on textual or statistical metadata. Although effective to some extent, these signals are easy to evade and potentially overlook other modalities, such as visual cues. In this study, we present the first systematic investigation of multimodal approaches for YouTube scam detection. Our dataset consolidates established scam categories and augments them with full length video content and policy grounded reasoning annotations. Our experimental evaluation demonstrates that a text-only model using video titles and descriptions (fine-tuned BERT) achieves moderate effectiveness (76.61% F1), with modest improvements when incorporating audio transcripts (77.98% F1). In contrast, visual analysis using a fine-tuned LLaVA-Video model yields stronger results (79.61% F1). Finally, a multimodal framework that integrates titles, descriptions, and video frames achieves the highest performance (80.53% F1). Beyond improving detection accuracy, our multimodal framework produces interpretable reasoning grounded in YouTube content policies, thereby enhancing transparency and supporting potential applications in automated moderation. Moreover, we validate our approach on in-the-wild YouTube data by analyzing 6,374 videos, thereby contributing a valuable resource for future research on scam detection.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.