Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PATCH: Learnable Tile-level Hybrid Sparsity for LLMs (2509.23410v1)

Published 27 Sep 2025 in cs.LG, cs.AI, and cs.PF

Abstract: LLMs deliver impressive performance but incur prohibitive memory and compute costs at deployment. Model pruning is an effective way to reduce these overheads, yet existing approaches face challenges: unstructured sparsity, where nonzeros can appear anywhere, preserves accuracy but yields irregular access patterns that prevent GPU acceleration, while semi-structured 2:4 sparsity is hardware-friendly but enforces a rigid 50% pattern that degrades model quality. To bridge this gap, we introduce PATCH, a hybrid sparsity framework that enables a continuous sparsity ratio between 0% and 50%. PATCH partitions weight matrices into tiles, assigning each tile to be either dense or 2:4 sparse via a learnable mask selection mechanism. This design provides fine-grained control over accuracy-acceleration tradeoffs and supports non-uniform sparsity across layers, leading to superior overall quality. Across models from 0.5B to 8B parameters, PATCH consistently narrows the gap to dense accuracy while delivering practical speedups. For instance, on LLaMA-2 7B with an A6000 GPU, PATCH achieves 1.18x-1.38x end-to-end speedup over dense baselines while improving accuracy by 0.37%-2.96% compared to the state-of-the-art 2:4 pruning method, MaskLLM.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube