Papers
Topics
Authors
Recent
2000 character limit reached

Mind the Links: Cross-Layer Attention for Link Prediction in Multiplex Networks (2509.23409v1)

Published 27 Sep 2025 in cs.LG

Abstract: Multiplex graphs capture diverse relations among shared nodes. Most predictors either collapse layers or treat them independently. This loses crucial inter-layer dependencies and struggles with scalability. To overcome this, we frame multiplex link prediction as multi-view edge classification. For each node pair, we construct a sequence of per-layer edge views and apply cross-layer self-attention to fuse evidence for the target layer. We present two models as instances of this framework: Trans-SLE, a lightweight transformer over static embeddings, and Trans-GAT, which combines layer-specific GAT encoders with transformer fusion. To ensure scalability and fairness, we introduce a Union--Set candidate pool and two leakage-free protocols: cross-layer and inductive subgraph generalization. Experiments on six public multiplex datasets show consistent macro-F_1 gains over strong baselines (MELL, HOPLP-MUL, RMNE). Our approach is simple, scalable, and compatible with both precomputed embeddings and GNN encoders.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.