Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Liaozhai through the Looking-Glass: On Paratextual Explicitation of Culture-Bound Terms in Machine Translation (2509.23395v1)

Published 27 Sep 2025 in cs.CL

Abstract: The faithful transfer of contextually-embedded meaning continues to challenge contemporary machine translation (MT), particularly in the rendering of culture-bound terms--expressions or concepts rooted in specific languages or cultures, resisting direct linguistic transfer. Existing computational approaches to explicitating these terms have focused exclusively on in-text solutions, overlooking paratextual apparatus in the footnotes and endnotes employed by professional translators. In this paper, we formalize Genette's (1987) theory of paratexts from literary and translation studies to introduce the task of paratextual explicitation for MT. We construct a dataset of 560 expert-aligned paratexts from four English translations of the classical Chinese short story collection Liaozhai and evaluate LLMs with and without reasoning traces on choice and content of explicitation. Experiments across intrinsic prompting and agentic retrieval methods establish the difficulty of this task, with human evaluation showing that LLM-generated paratexts improve audience comprehension, though remain considerably less effective than translator-authored ones. Beyond model performance, statistical analysis reveals that even professional translators vary widely in their use of paratexts, suggesting that cultural mediation is inherently open-ended rather than prescriptive. Our findings demonstrate the potential of paratextual explicitation in advancing MT beyond linguistic equivalence, with promising extensions to monolingual explanation and personalized adaptation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.