Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dual-Space Smoothness for Robust and Balanced LLM Unlearning (2509.23362v1)

Published 27 Sep 2025 in cs.CL and cs.AI

Abstract: With the rapid advancement of LLMs, Machine Unlearning has emerged to address growing concerns around user privacy, copyright infringement, and overall safety. Yet state-of-the-art (SOTA) unlearning methods often suffer from catastrophic forgetting and metric imbalance, for example by over-optimizing one objective (e.g., unlearning effectiveness, utility preservation, or privacy protection) at the expense of others. In addition, small perturbations in the representation or parameter space can be exploited by relearn and jailbreak attacks. To address these challenges, we propose PRISM, a unified framework that enforces dual-space smoothness in representation and parameter spaces to improve robustness and balance unlearning metrics. PRISM consists of two smoothness optimization stages: (i) a representation space stage that employs a robustly trained probe to defend against jailbreak attacks, and (ii) a parameter-space stage that decouples retain-forget gradient conflicts, reduces imbalance, and smooths the parameter space to mitigate relearning attacks. Extensive experiments on WMDP and MUSE, across conversational-dialogue and continuous-text settings, show that PRISM outperforms SOTA baselines under multiple attacks while achieving a better balance among key metrics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.