Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 114 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

New Synthetic Goldmine: Hand Joint Angle-Driven EMG Data Generation Framework for Micro-Gesture Recognition (2509.23359v1)

Published 27 Sep 2025 in cs.HC

Abstract: Electromyography (EMG)-based gesture recognition has emerged as a promising approach for human-computer interaction. However, its performance is often limited by the scarcity of labeled EMG data, significant cross-user variability, and poor generalization to unseen gestures. To address these challenges, we propose SeqEMG-GAN, a conditional, sequence-driven generative framework that synthesizes high-fidelity EMG signals from hand joint angle sequences. Our method introduces a context-aware architecture composed of an angle encoder, a dual-layer context encoder featuring the novel Ang2Gist unit, a deep convolutional EMG generator, and a discriminator, all jointly optimized via adversarial learning. By conditioning on joint kinematic trajectories, SeqEMG-GAN is capable of generating semantically consistent EMG sequences, even for previously unseen gestures, thereby enhancing data diversity and physiological plausibility. Experimental results show that classifiers trained solely on synthetic data experience only a slight accuracy drop (from 57.77% to 55.71%). In contrast, training with a combination of real and synthetic data significantly improves accuracy to 60.53%, outperforming real-only training by 2.76%. These findings demonstrate the effectiveness of our framework,also achieves the state-of-art performance in augmenting EMG datasets and enhancing gesture recognition performance for applications such as neural robotic hand control, AI/AR glasses, and gesture-based virtual gaming systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.