Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Targeted perturbations reveal brain-like local coding axes in robustified, but not standard, ANN-based brain models (2509.23333v1)

Published 27 Sep 2025 in q-bio.NC, cs.CV, and cs.LG

Abstract: Artificial neural networks (ANNs) have become the de facto standard for modeling the human visual system, primarily due to their success in predicting neural responses. However, with many models now achieving similar predictive accuracy, we need a stronger criterion. Here, we use small-scale adversarial probes to characterize the local representational geometry of many highly predictive ANN-based brain models. We report four key findings. First, we show that most contemporary ANN-based brain models are unexpectedly fragile. Despite high prediction scores, their response predictions are highly sensitive to small, imperceptible perturbations, revealing unreliable local coding directions. Second, we demonstrate that a model's sensitivity to adversarial probes can better discriminate between candidate neural encoding models than prediction accuracy alone. Third, we find that standard models rely on distinct local coding directions that do not transfer across model architectures. Finally, we show that adversarial probes from robustified models produce generalizable and semantically meaningful changes, suggesting that they capture the local coding dimensions of the visual system. Together, our work shows that local representational geometry provides a stronger criterion for brain model evaluation. We also provide empirical grounds for favoring robust models, whose more stable coding axes not only align better with neural selectivity but also generate concrete, testable predictions for future experiments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.