Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Memory Efficient and Staleness Free Pipeline Parallel DNN Training Framework with Improved Convergence Speed (2509.23241v1)

Published 27 Sep 2025 in cs.DC

Abstract: High resource requirement for Deep Neural Network (DNN) training across multiple GPUs necessitates development of various parallelism techniques. In this paper, we introduce two interconnected DNN training frameworks, namely, V-TiMePReSt and I-TiMePReSt, based on pipeline parallelism, a variant of model parallelism. V-TiMePReSt is a completely staleness-free system which enables the DNNs to be trained on the latest updated weights in each stage of all forward and backward passes. Developing staleness-aware systems at the expense of weight stashing reduces GPU-memory consumption, however, increases the number of epochs to converge. Thus, we introduce I-TiMePReSt, which is also a staleness-aware system, but not at the expense of weight stashing. It does not rely solely on the stale weights or the latest updated weights. I-TiMePReSt computes an intermediate weight towards the latter and performs backward pass on it. Additionally, we formulate the significance of the stale weights mathematically depending on the degree of staleness. In contrast to V-TiMePReSt, I-TiMePReSt works based on the assumption that stale weights have a significant contribution in training, which can be quantified mathematically based on the degree of staleness, although there are other contributory factors which should not be ignored. Experimental results show that V-TiMePReSt is advantageous over existing models in terms of $1)$ the extent of staleness of the weight parameter values and $2)$ GPU memory efficiency, while I-TiMePReSt is superior in terms of $1)$ removing staleness of the weight parameters without removing weight stashing and $2)$ maintaining the trade-off between GPU memory consumption and convergence speed (number of epochs).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube