Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Leave No Observation Behind: Real-time Correction for VLA Action Chunks (2509.23224v1)

Published 27 Sep 2025 in cs.RO, cs.AI, cs.CV, cs.SY, and eess.SY

Abstract: To improve efficiency and temporal coherence, Vision-Language-Action (VLA) models often predict action chunks; however, this action chunking harms reactivity under inference delay and long horizons. We introduce Asynchronous Action Chunk Correction (A2C2), which is a lightweight real-time chunk correction head that runs every control step and adds a time-aware correction to any off-the-shelf VLA's action chunk. The module combines the latest observation, the predicted action from VLA (base action), a positional feature that encodes the index of the base action within the chunk, and some features from the base policy, then outputs a per-step correction. This preserves the base model's competence while restoring closed-loop responsiveness. The approach requires no retraining of the base policy and is orthogonal to asynchronous execution schemes such as Real Time Chunking (RTC). On the dynamic Kinetix task suite (12 tasks) and LIBERO Spatial, our method yields consistent success rate improvements across increasing delays and execution horizons (+23% point and +7% point respectively, compared to RTC), and also improves robustness for long horizons even with zero injected delay. Since the correction head is small and fast, there is minimal overhead compared to the inference of large VLA models. These results indicate that A2C2 is an effective, plug-in mechanism for deploying high-capacity chunking policies in real-time control.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 13 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube