Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

GLUE: Global-Local Unified Encoding for Imitation Learning via Key-Patch Tracking (2509.23220v1)

Published 27 Sep 2025 in cs.RO

Abstract: In recent years, visual representation learning has gained widespread attention in robotic imitation learning. However, in complex Out-of-Distribution(OOD) settings characterized by clutter and occlusion, the attention of global visual representations can be diluted or interfered, leading to degraded policy performance. The invariance of local representations for task-relevant objects offers a solution. By efficiently utilizing these local representations, training and testing data can be mapped to a more similar feature space, thereby mitigating the covariate shift problem. Accordingly, we propose GLUE, a global-local unified encoding framework for imitation learning based on key-patch tracking. GLUE selects and tracks key-patches as critical local representations by employing a text-guided mechanism. It features a novel fusion framework where global patch features query local patches to distill essential information, yielding fine-grained local features with low heterogeneity relative to the global context. This fused representation steers the robot's visual attention toward task-relevant objects and preserves precise global context, which together align the training and testing distributions into a similar and task-informative feature space, ultimately enhancing the robustness of the imitation learning policy. Experiments demonstrate that GLUE achieves strong performance across diverse tasks in both simulation and real-world settings, outperforming the strongest baseline by 17.6% in simulation, 36.3% in real-world environments, and 58.3% on real-world generalization settings. The project website of GLUE is available at https://GLUE666.github.io/.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube