Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Sparse Deep Additive Model with Interactions: Enhancing Interpretability and Predictability (2509.23068v1)

Published 27 Sep 2025 in stat.ML and cs.LG

Abstract: Recent advances in deep learning highlight the need for personalized models that can learn from small or moderate samples, handle high dimensional features, and remain interpretable. To address this challenge, we propose the Sparse Deep Additive Model with Interactions (SDAMI), a framework that combines sparsity driven feature selection with deep subnetworks for flexible function approximation. Unlike conventional deep learning models, which often function as black boxes, SDAMI explicitly disentangles main effects and interaction effects to enhance interpretability. At the same time, its deep additive structure achieves higher predictive accuracy than classical additive models. Central to SDAMI is the concept of an Effect Footprint, which assumes that higher order interactions project marginally onto main effects. Guided by this principle, SDAMI adopts a two stage strategy: first, identify strong main effects that implicitly carry information about important interactions. second, exploit this information through structured regularization such as group lasso to distinguish genuine main effects from interaction effects. For each selected main effect, SDAMI constructs a dedicated subnetwork, enabling nonlinear function approximation while preserving interpretability and providing a structured foundation for modeling interactions. Extensive simulations with comparisons confirm SDAMI$'$s ability to recover effect structures across diverse scenarios, while applications in reliability analysis, neuroscience, and medical diagnostics further demonstrate its versatility in addressing real-world high-dimensional modeling challenges.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: