Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamics of Learning: Generative Schedules from Latent ODEs (2509.23052v1)

Published 27 Sep 2025 in cs.LG

Abstract: The learning rate schedule is one of the most impactful aspects of neural network optimization, yet most schedules either follow simple parametric functions or react only to short-term training signals. None of them are supported by a comprehensive temporal view of how well neural networks actually train. We present a new learning rate scheduler that models the training performance of neural networks as a dynamical system. It leverages training runs from a hyperparameter search to learn a latent representation of the training process. Given current training metrics, it predicts the future learning rate schedule with the best long-term validation performance. Our scheduler generalizes beyond previously observed training dynamics and creates specialized schedules that deviate noticeably from common parametric functions. It achieves SOTA results for image classification with CNN and ResNet models as well as for next-token prediction with a transformer model. The trained models are located in flatter regions of the loss landscape and thus provide better generalization than those trained with other schedules. Our method is computationally efficient, optimizer-agnostic, and can easily be layered on top of ML experiment-tracking platforms. An implementation of our scheduler will be made available after acceptance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 8 tweets and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: