Papers
Topics
Authors
Recent
2000 character limit reached

AI Noether -- Bridging the Gap Between Scientific Laws Derived by AI Systems and Canonical Knowledge via Abductive Inference (2509.23004v1)

Published 26 Sep 2025 in cs.AI, cs.SC, and math.AG

Abstract: A core goal in modern science is to harness recent advances in AI and computer processing to automate and accelerate the scientific method. Symbolic regression can fit interpretable models to data, but these models often sit outside established theory. Recent systems (e.g., AI Descartes, AI Hilbert) enforce derivability from prior axioms. However, sometimes new data and associated hypotheses derived from data are not consistent with existing theory because the existing theory is incomplete or incorrect. Automating abductive inference to close this gap remains open. We propose a solution: an algebraic geometry-based system that, given an incomplete axiom system and a hypothesis that it cannot explain, automatically generates a minimal set of missing axioms that suffices to derive the axiom, as long as axioms and hypotheses are expressible as polynomial equations. We formally establish necessary and sufficient conditions for the successful retrieval of such axioms. We illustrate the efficacy of our approach by demonstrating its ability to explain Kepler's third law and a few other laws, even when key axioms are absent.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.