Papers
Topics
Authors
Recent
2000 character limit reached

Physically Plausible Multi-System Trajectory Generation and Symmetry Discovery (2509.23003v1)

Published 26 Sep 2025 in cs.LG, cs.AI, cs.SY, and eess.SY

Abstract: From metronomes to celestial bodies, mechanics underpins how the world evolves in time and space. With consideration of this, a number of recent neural network models leverage inductive biases from classical mechanics to encourage model interpretability and ensure forecasted states are physical. However, in general, these models are designed to capture the dynamics of a single system with fixed physical parameters, from state-space measurements of a known configuration space. In this paper we introduce Symplectic Phase Space GAN (SPS-GAN) which can capture the dynamics of multiple systems, and generalize to unseen physical parameters from. Moreover, SPS-GAN does not require prior knowledge of the system configuration space. In fact, SPS-GAN can discover the configuration space structure of the system from arbitrary measurement types (e.g., state-space measurements, video frames). To achieve physically plausible generation, we introduce a novel architecture which embeds a Hamiltonian neural network recurrent module in a conditional GAN backbone. To discover the structure of the configuration space, we optimize the conditional time-series GAN objective with an additional physically motivated term to encourages a sparse representation of the configuration space. We demonstrate the utility of SPS-GAN for trajectory prediction, video generation and symmetry discovery. Our approach captures multiple systems and achieves performance on par with supervised models designed for single systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.