Sample-efficient Multiclass Calibration under $\ell_{p}$ Error (2509.23000v1)
Abstract: Calibrating a multiclass predictor, that outputs a distribution over labels, is particularly challenging due to the exponential number of possible prediction values. In this work, we propose a new definition of calibration error that interpolates between two established calibration error notions, one with known exponential sample complexity and one with polynomial sample complexity for calibrating a given predictor. Our algorithm can calibrate any given predictor for the entire range of interpolation, except for one endpoint, using only a polynomial number of samples. At the other endpoint, we achieve nearly optimal dependence on the error parameter, improving upon previous work. A key technical contribution is a novel application of adaptive data analysis with high adaptivity but only logarithmic overhead in the sample complexity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.