Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

T-TAMER: Provably Taming Trade-offs in ML Serving (2509.22992v1)

Published 26 Sep 2025 in cs.LG and cs.GT

Abstract: As machine learning models continue to grow in size and complexity, efficient serving faces increasingly broad trade-offs spanning accuracy, latency, resource usage, and other objectives. Multi-model serving further complicates these trade-offs; for example, in cascaded models, each early-exit decision balances latency reduction against potential accuracy loss. Despite the pervasiveness and importance of such trade-offs, current strategies remain largely heuristic and case-specific, limiting both their theoretical guarantees and general applicability. We present a general framework, T-Tamer, which formalizes this setting as a multi-stage decision process, where the objective is to determine both when to exit and which model to consult. Our main result shows that recall (i.e., the ability to revisit earlier models) is both necessary and sufficient for achieving provable performance guarantees. In particular, we prove that strategies without recall cannot obtain any constant-factor approximation to the optimal trade-off, whereas recall-based strategies provably attain the optimal trade-off in polynomial time. We validate our analysis through experiments on synthetic datasets and early-exit workloads for vision and NLP benchmarks. The results show that recall-based strategies consistently yield efficient accuracy-latency trade-offs. We hope this work provides a principled foundation for bridging heuristic practice with theoretical guarantees in the design of early-exit and cascaded models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.