Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Meta-Learning Fourier Neural Operators for Hessian Inversion and Enhanced Variational Data Assimilation (2509.22949v1)

Published 26 Sep 2025 in cs.LG

Abstract: Data assimilation (DA) is crucial for enhancing solutions to partial differential equations (PDEs), such as those in numerical weather prediction, by optimizing initial conditions using observational data. Variational DA methods are widely used in oceanic and atmospheric forecasting, but become computationally expensive, especially when Hessian information is involved. To address this challenge, we propose a meta-learning framework that employs the Fourier Neural Operator (FNO) to approximate the inverse Hessian operator across a family of DA problems, thereby providing an effective initialization for the conjugate gradient (CG) method. Numerical experiments on a linear advection equation demonstrate that the resulting FNO-CG approach reduces the average relative error by $62\%$ and the number of iterations by $17\%$ compared to the standard CG. These improvements are most pronounced in ill-conditioned scenarios, highlighting the robustness and efficiency of FNO-CG for challenging DA problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.