Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Soft-Di[M]O: Improving One-Step Discrete Image Generation with Soft Embeddings (2509.22925v1)

Published 26 Sep 2025 in cs.CV, cs.AI, and cs.LG

Abstract: One-step generators distilled from Masked Diffusion Models (MDMs) compress multiple sampling steps into a single forward pass, enabling efficient text and image synthesis. However, they suffer two key limitations: they inherit modeling bias from the teacher, and their discrete token outputs block gradient flow, preventing post-distillation refinements such as adversarial training, reward-based fine-tuning, and Test-Time Embedding Optimization (TTEO). In this work, we introduce soft embeddings, a simple relaxation that replaces discrete tokens with the expected embeddings under the generator's output distribution. Soft embeddings preserve representation fidelity for one-step discrete generator while providing a fully differentiable continuous surrogate that is compatible with teacher backbones and tokenizer decoders. Integrating soft embeddings into the Di[M]O distillation framework (denoted Soft-Di[M]O) makes one-step generators end-to-end trainable and enables straightforward application of GAN-based refinement, differentiable reward fine-tuning, and TTEO. Empirically, across multiple MDM teachers (e.g., MaskBit, MaskGen), Soft-Di[M]O achieves state-of-the-art one-step results: improved class-to-image performance, a one-step FID of 1.56 on ImageNet-256 with GAN-based refinement, along with higher GenEval and HPS scores on text-to-image with reward fine-tuning, and further gains from TTEO.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.