Papers
Topics
Authors
Recent
2000 character limit reached

Communication-Efficient and Interoperable Distributed Learning (2509.22823v1)

Published 26 Sep 2025 in cs.LG

Abstract: Collaborative learning across heterogeneous model architectures presents significant challenges in ensuring interoperability and preserving privacy. We propose a communication-efficient distributed learning framework that supports model heterogeneity and enables modular composition during inference. To facilitate interoperability, all clients adopt a common fusion-layer output dimension, which permits each model to be partitioned into a personalized base block and a generalized modular block. Clients share their fusion-layer outputs, keeping model parameters and architectures private. Experimental results demonstrate that the framework achieves superior communication efficiency compared to federated learning (FL) and federated split learning (FSL) baselines, while ensuring stable training performance across heterogeneous architectures.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: