Papers
Topics
Authors
Recent
2000 character limit reached

Painless Activation Steering: An Automated, Lightweight Approach for Post-Training Large Language Models (2509.22739v1)

Published 25 Sep 2025 in cs.CL, cs.AI, cs.LG, and stat.ML

Abstract: LLMs (LMs) are typically post-trained for desired capabilities and behaviors via weight-based or prompt-based steering, but the former is time-consuming and expensive, and the latter is not precisely controllable and often requires manual trial-and-error. While activation steering (AS) promises a cheap, fast, and controllable alternative to the two existing post-training methods, current AS techniques require hand-crafted prompt pairs or labor-intensive feature annotation, making them more inconvenient than the plug-and-play methods such as Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT). We introduce Painless Activation Steering (PAS), a family of fully automated methods that make AS readily usable with any given labeled dataset, with no need for prompt construction, feature labeling, or human intervention. We evaluate PAS on three open-weight models (Llama3.1-8B-Instruct, DeepSeek-R1-Distill-8B, and Nous-Hermes-2) and 18 tasks; we find that PAS reliably improves performance for behavior tasks, but not for intelligence-oriented tasks. The introspective variant (iPAS) delivers the strongest causal steering effects (10.1% on Bias, 5.2% on Morality, and 34.8% on Alignment). We also show PAS delivers additional gains on top of In-Context Learning (ICL) and SFT. PAS constructs a fast, lightweight activation vector that can be cheaply trained, easily stored, and activated at will. Our results provide a characterization of where AS helps, where it fails, and how to deploy it as a practical, automated LM post-training option.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.