Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 25 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Towards Efficient Online Exploration for Reinforcement Learning with Human Feedback (2509.22633v1)

Published 26 Sep 2025 in stat.ML, cs.AI, cs.CL, cs.LG, math.ST, and stat.TH

Abstract: Reinforcement learning with human feedback (RLHF), which learns a reward model from human preference data and then optimizes a policy to favor preferred responses, has emerged as a central paradigm for aligning LLMs with human preferences. In this paper, we investigate exploration principles for online RLHF, where one seeks to adaptively collect new preference data to refine both the reward model and the policy in a data-efficient manner. By examining existing optimism-based exploration algorithms, we identify a drawback in their sampling protocol: they tend to gather comparisons that fail to reduce the most informative uncertainties in reward differences, and we prove lower bounds showing that such methods can incur linear regret over exponentially long horizons. Motivated by this insight, we propose a new exploration scheme that directs preference queries toward reducing uncertainty in reward differences most relevant to policy improvement. Under a multi-armed bandit model of RLHF, we establish regret bounds of order $T{(\beta+1)/(\beta+2)}$, where $\beta>0$ is a hyperparameter that balances reward maximization against mitigating distribution shift. To our knowledge, this is the first online RLHF algorithm with regret scaling polynomially in all model parameters.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.