Papers
Topics
Authors
Recent
2000 character limit reached

Smoothing-Based Conformal Prediction for Balancing Efficiency and Interpretability (2509.22529v1)

Published 26 Sep 2025 in stat.ML and cs.LG

Abstract: Conformal Prediction (CP) is a distribution-free framework for constructing statistically rigorous prediction sets. While popular variants such as CD-split improve CP's efficiency, they often yield prediction sets composed of multiple disconnected subintervals, which are difficult to interpret. In this paper, we propose SCD-split, which incorporates smoothing operations into the CP framework. Such smoothing operations potentially help merge the subintervals, thus leading to interpretable prediction sets. Experimental results on both synthetic and real-world datasets demonstrate that SCD-split balances the interval length and the number of disconnected subintervals. Theoretically, under specific conditions, SCD-split provably reduces the number of disconnected subintervals while maintaining comparable coverage guarantees and interval length compared with CD-split.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.