Direct Bias-Correction Term Estimation for Propensity Scores and Average Treatment Effect Estimation (2509.22122v1)
Abstract: This study considers the estimation of the average treatment effect (ATE). For ATE estimation, we estimate the propensity score through direct bias-correction term estimation. Let ${(X_i, D_i, Y_i)}_{i=1}{n}$ be the observations, where $X_i \in \mathbb{R}p$ denotes $p$-dimensional covariates, $D_i \in {0, 1}$ denotes a binary treatment assignment indicator, and $Y_i \in \mathbb{R}$ is an outcome. In ATE estimation, the bias-correction term $h_0(X_i, D_i) = \frac{1[D_i = 1]}{e_0(X_i)} - \frac{1[D_i = 0]}{1 - e_0(X_i)}$ plays an important role, where $e_0(X_i)$ is the propensity score, the probability of being assigned treatment $1$. In this study, we propose estimating $h_0$ (or equivalently the propensity score $e_0$) by directly minimizing the prediction error of $h_0$. Since the bias-correction term $h_0$ is essential for ATE estimation, this direct approach is expected to improve estimation accuracy for the ATE. For example, existing studies often employ maximum likelihood or covariate balancing to estimate $e_0$, but these approaches may not be optimal for accurately estimating $h_0$ or the ATE. We present a general framework for this direct bias-correction term estimation approach from the perspective of Bregman divergence minimization and conduct simulation studies to evaluate the effectiveness of the proposed method.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.