Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Causal-EPIG: A Prediction-Oriented Active Learning Framework for CATE Estimation (2509.21866v1)

Published 26 Sep 2025 in stat.ML and cs.LG

Abstract: Estimating the Conditional Average Treatment Effect (CATE) is often constrained by the high cost of obtaining outcome measurements, making active learning essential. However, conventional active learning strategies suffer from a fundamental objective mismatch. They are designed to reduce uncertainty in model parameters or in observable factual outcomes, failing to directly target the unobservable causal quantities that are the true objects of interest. To address this misalignment, we introduce the principle of causal objective alignment, which posits that acquisition functions should target unobservable causal quantities, such as the potential outcomes and the CATE, rather than indirect proxies. We operationalize this principle through the Causal-EPIG framework, which adapts the information-theoretic criterion of Expected Predictive Information Gain (EPIG) to explicitly quantify the value of a query in terms of reducing uncertainty about unobservable causal quantities. From this unified framework, we derive two distinct strategies that embody a fundamental trade-off: a comprehensive approach that robustly models the full causal mechanisms via the joint potential outcomes, and a focused approach that directly targets the CATE estimand for maximum sample efficiency. Extensive experiments demonstrate that our strategies consistently outperform standard baselines, and crucially, reveal that the optimal strategy is context-dependent, contingent on the base estimator and data complexity. Our framework thus provides a principled guide for sample-efficient CATE estimation in practice.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube