Papers
Topics
Authors
Recent
2000 character limit reached

A Comprehensive Evaluation of Transformer-Based Question Answering Models and RAG-Enhanced Design (2509.21845v1)

Published 26 Sep 2025 in cs.CV

Abstract: Transformer-based models have advanced the field of question answering, but multi-hop reasoning, where answers require combining evidence across multiple passages, remains difficult. This paper presents a comprehensive evaluation of retrieval strategies for multi-hop question answering within a retrieval-augmented generation framework. We compare cosine similarity, maximal marginal relevance, and a hybrid method that integrates dense embeddings with lexical overlap and re-ranking. To further improve retrieval, we adapt the EfficientRAG pipeline for query optimization, introducing token labeling and iterative refinement while maintaining efficiency. Experiments on the HotpotQA dataset show that the hybrid approach substantially outperforms baseline methods, achieving a relative improvement of 50 percent in exact match and 47 percent in F1 score compared to cosine similarity. Error analysis reveals that hybrid retrieval improves entity recall and evidence complementarity, while remaining limited in handling distractors and temporal reasoning. Overall, the results suggest that hybrid retrieval-augmented generation provides a practical zero-shot solution for multi-hop question answering, balancing accuracy, efficiency, and interpretability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.