Can LLMs Solve and Generate Linguistic Olympiad Puzzles? (2509.21820v1)
Abstract: In this paper, we introduce a combination of novel and exciting tasks: the solution and generation of linguistic puzzles. We focus on puzzles used in Linguistic Olympiads for high school students. We first extend the existing benchmark for the task of solving linguistic puzzles. We explore the use of LLMs, including recent state-of-the-art models such as OpenAI's o1, for solving linguistic puzzles, analyzing their performance across various linguistic topics. We demonstrate that LLMs outperform humans on most puzzles types, except for those centered on writing systems, and for the understudied languages. We use the insights from puzzle-solving experiments to direct the novel task of puzzle generation. We believe that automating puzzle generation, even for relatively simple puzzles, holds promise for expanding interest in linguistics and introducing the field to a broader audience. This finding highlights the importance of linguistic puzzle generation as a research task: such puzzles can not only promote linguistics but also support the dissemination of knowledge about rare and understudied languages.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.