Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Scaling Laws for Neural Material Models (2509.21811v1)

Published 26 Sep 2025 in cs.LG

Abstract: Predicting material properties is crucial for designing better batteries, semiconductors, and medical devices. Deep learning helps scientists quickly find promising materials by predicting their energy, forces, and stresses. Companies scale capacities of deep learning models in multiple domains, such as LLMing, and invest many millions of dollars into such models. Our team analyzes how scaling training data (giving models more information to learn from), model sizes (giving models more capacity to learn patterns), and compute (giving models more computational resources) for neural networks affects their performance for material property prediction. In particular, we trained both transformer and EquiformerV2 neural networks to predict material properties. We find empirical scaling laws for these models: we can predict how increasing each of the three hyperparameters (training data, model size, and compute) affects predictive performance. In particular, the loss $L$ can be measured with a power law relationship $L = \alpha \cdot N{-\beta}$, where $\alpha$ and $\beta$ are constants while $N$ is the relevant hyperparameter. We also incorporate command-line arguments for changing training settings such as the amount of epochs, maximum learning rate, and whether mixed precision is enabled. Future work could entail further investigating scaling laws for other neural network models in this domain, such as GemNet and fully connected networks, to assess how they compare to the models we trained.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube