Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Towards Minimal Causal Representations for Human Multimodal Language Understanding (2509.21805v1)

Published 26 Sep 2025 in cs.CL

Abstract: Human Multimodal Language Understanding (MLU) aims to infer human intentions by integrating related cues from heterogeneous modalities. Existing works predominantly follow a ``learning to attend" paradigm, which maximizes mutual information between data and labels to enhance predictive performance. However, such methods are vulnerable to unintended dataset biases, causing models to conflate statistical shortcuts with genuine causal features and resulting in degraded out-of-distribution (OOD) generalization. To alleviate this issue, we introduce a Causal Multimodal Information Bottleneck (CaMIB) model that leverages causal principles rather than traditional likelihood. Concretely, we first applies the information bottleneck to filter unimodal inputs, removing task-irrelevant noise. A parameterized mask generator then disentangles the fused multimodal representation into causal and shortcut subrepresentations. To ensure global consistency of causal features, we incorporate an instrumental variable constraint, and further adopt backdoor adjustment by randomly recombining causal and shortcut features to stabilize causal estimation. Extensive experiments on multimodal sentiment analysis, humor detection, and sarcasm detection, along with OOD test sets, demonstrate the effectiveness of CaMIB. Theoretical and empirical analyses further highlight its interpretability and soundness.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.