ChaosNexus: A Foundation Model for Universal Chaotic System Forecasting with Multi-scale Representations (2509.21802v1)
Abstract: Accurately forecasting chaotic systems, prevalent in domains such as weather prediction and fluid dynamics, remains a significant scientific challenge. The inherent sensitivity of these systems to initial conditions, coupled with a scarcity of observational data, severely constrains traditional modeling approaches. Since these models are typically trained for a specific system, they lack the generalization capacity necessary for real-world applications, which demand robust zero-shot or few-shot forecasting on novel or data-limited scenarios. To overcome this generalization barrier, we propose ChaosNexus, a foundation model pre-trained on a diverse corpus of chaotic dynamics. ChaosNexus employs a novel multi-scale architecture named ScaleFormer augmented with Mixture-of-Experts layers, to capture both universal patterns and system-specific behaviors. The model demonstrates state-of-the-art zero-shot generalization across both synthetic and real-world benchmarks. On a large-scale testbed comprising over 9,000 synthetic chaotic systems, it improves the fidelity of long-term attractor statistics by more than 40% compared to the leading baseline. This robust performance extends to real-world applications with exceptional data efficiency. For instance, in 5-day global weather forecasting, ChaosNexus achieves a competitive zero-shot mean error below 1 degree, a result that further improves with few-shot fine-tuning. Moreover, experiments on the scaling behavior of ChaosNexus provide a guiding principle for scientific foundation models: cross-system generalization stems from the diversity of training systems, rather than sheer data volume.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.