Papers
Topics
Authors
Recent
2000 character limit reached

Navigating the Impact of Structured Output Format on Large Language Models through the Compass of Causal Inference (2509.21791v1)

Published 26 Sep 2025 in cs.CL and cs.LG

Abstract: Structured output from LLMs has enhanced efficiency in processing generated information and is increasingly adopted in industrial applications. Prior studies have investigated the impact of structured output on LLMs' generation quality, often presenting one-way findings. Some suggest that structured format enhances completeness and factual accuracy, while others argue that it restricts the reasoning capacity of LLMs and leads to reductions in standard evaluation metrics. Potential limitations of these assessments include restricted testing scenarios, weakly controlled comparative settings, and reliance on coarse metrics. In this work, we present a refined analysis using causal inference. Based on one assumed and two guaranteed constraints, we derive five potential causal structures characterizing the influence of structured output on LLMs' generation: (1) collider without m-bias, (2) collider with m-bias, (3) single cause from instruction, (4) single cause from output format, and (5) independence. Across seven public and one developed reasoning tasks, we find that coarse metrics report positive, negative, or neutral effects of structured output on GPT-4o's generation. However, causal inference reveals no causal impact in 43 out of 48 scenarios. In the remaining 5, 3 involve multifaceted causal structures influenced by concrete instructions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.