Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Machine Learning and AI Applied to fNIRS Data Reveals Novel Brain Activity Biomarkers in Stable Subclinical Multiple Sclerosis (2509.21770v1)

Published 26 Sep 2025 in cs.LG

Abstract: People with Multiple Sclerosis (MS) complain of problems with hand dexterity and cognitive fatigue. However, in many cases, impairments are subtle and difficult to detect. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that measures brain hemodynamic responses during cognitive or motor tasks. We aimed to detect brain activity biomarkers that could explain subjective reports of cognitive fatigue while completing dexterous tasks and provide targets for future brain stimulation treatments. We recruited 15 people with MS who did not have a hand (Nine Hole Peg Test [NHPT]), mobility, or cognitive impairment, and 12 age- and sex-matched controls. Participants completed two types of hand dexterity tasks with their dominant hand, single task and dual task (NHPT while holding a ball between the fifth finger and hypothenar eminence of the same hand). We analyzed fNIRS data (oxygenated and deoxygenated hemoglobin levels) using a machine learning framework to classify MS patients from controls based on their brain activation patterns in bilateral prefrontal and sensorimotor cortices. The K-Nearest Neighbor classifier achieved an accuracy of 75.0% for single manual dexterity tasks and 66.7% for the more complex dual manual dexterity tasks. Using XAI, we found that the most important brain regions contributing to the machine learning model were the supramarginal/angular gyri and the precentral gyrus (sensory integration and motor regions) of the ipsilateral hemisphere, with suppressed activity and slower neurovascular response in the MS group. During both tasks, deoxygenated hemoglobin levels were better predictors than the conventional measure of oxygenated hemoglobin. This nonconventional method of fNIRS data analysis revealed novel brain activity biomarkers that can help develop personalized brain stimulation targets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.