Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CubistMerge: Spatial-Preserving Token Merging For Diverse ViT Backbones (2509.21764v1)

Published 26 Sep 2025 in cs.CV and cs.LG

Abstract: Many modern ViT backbones adopt spatial architectural designs, such as window attention, decomposed relative positional embeddings in SAM, and RoPE in DINOv3. Such architectures impose new challenges on token reduction, as the vast majority of existing methods fail to preserve the spatial structure these architectures depend on. In this paper, we introduce a simple yet effective token merging method that maintains spatial integrity, enabling seamless compatibility with spatial architectures. We reconcile two seemingly conflicting requirements: (i)exploiting the uneven information distribution across the spatial layout while (ii)preserving the spatial structure post-merging. Our approach employs (i)a 2D reduction strategy to enforce structured token layouts, (ii)a spatial-aware merging algorithm that maintains relative token positions, and (iii)a novel max-magnitude-per-dimension token representation that preserves salient features. Our method demonstrates strong performance both off-the-shelf and with fine-tuning, achieving state-of-the-art results on spatial and non-spatial architectures across various vision tasks. Specifically, we achieve 1.25x speedup on SAM-H with only 0.7% mIOU drop evaluated on COCO off-the-shelf, and 1.15x speedup on DeiT-B with no top-1 accuracy drop on ImageNet within just one epoch of fine-tuning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.