Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Backdoor Attribution: Elucidating and Controlling Backdoor in Language Models (2509.21761v1)

Published 26 Sep 2025 in cs.CR and cs.AI

Abstract: Fine-tuned LLMs are vulnerable to backdoor attacks through data poisoning, yet the internal mechanisms governing these attacks remain a black box. Previous research on interpretability for LLM safety tends to focus on alignment, jailbreak, and hallucination, but overlooks backdoor mechanisms, making it difficult to understand and fully eliminate the backdoor threat. In this paper, aiming to bridge this gap, we explore the interpretable mechanisms of LLM backdoors through Backdoor Attribution (BkdAttr), a tripartite causal analysis framework. We first introduce the Backdoor Probe that proves the existence of learnable backdoor features encoded within the representations. Building on this insight, we further develop Backdoor Attention Head Attribution (BAHA), efficiently pinpointing the specific attention heads responsible for processing these features. Our primary experiments reveals these heads are relatively sparse; ablating a minimal \textbf{$\sim$ 3%} of total heads is sufficient to reduce the Attack Success Rate (ASR) by \textbf{over 90%}. More importantly, we further employ these findings to construct the Backdoor Vector derived from these attributed heads as a master controller for the backdoor. Through only \textbf{1-point} intervention on \textbf{single} representation, the vector can either boost ASR up to \textbf{$\sim$ 100% ($\uparrow$)} on clean inputs, or completely neutralize backdoor, suppressing ASR down to \textbf{$\sim$ 0% ($\downarrow$)} on triggered inputs. In conclusion, our work pioneers the exploration of mechanistic interpretability in LLM backdoors, demonstrating a powerful method for backdoor control and revealing actionable insights for the community.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.