Papers
Topics
Authors
Recent
2000 character limit reached

SubZeroCore: A Submodular Approach with Zero Training for Coreset Selection (2509.21748v1)

Published 26 Sep 2025 in cs.LG and cs.AI

Abstract: The goal of coreset selection is to identify representative subsets of datasets for efficient model training. Yet, existing approaches paradoxically require expensive training-based signals, e.g., gradients, decision boundary estimates or forgetting counts, computed over the entire dataset prior to pruning, which undermines their very purpose by requiring training on samples they aim to avoid. We introduce SubZeroCore, a novel, training-free coreset selection method that integrates submodular coverage and density into a single, unified objective. To achieve this, we introduce a sampling strategy based on a closed-form solution to optimally balance these objectives, guided by a single hyperparameter that explicitly controls the desired coverage for local density measures. Despite no training, extensive evaluations show that SubZeroCore matches training-based baselines and significantly outperforms them at high pruning rates, while dramatically reducing computational overhead. SubZeroCore also demonstrates superior robustness to label noise, highlighting its practical effectiveness and scalability for real-world scenarios.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.