Papers
Topics
Authors
Recent
2000 character limit reached

HyperCore: Coreset Selection under Noise via Hypersphere Models (2509.21746v1)

Published 26 Sep 2025 in cs.LG and cs.AI

Abstract: The goal of coreset selection methods is to identify representative subsets of datasets for efficient model training. Yet, existing methods often ignore the possibility of annotation errors and require fixed pruning ratios, making them impractical in real-world settings. We present HyperCore, a robust and adaptive coreset selection framework designed explicitly for noisy environments. HyperCore leverages lightweight hypersphere models learned per class, embedding in-class samples close to a hypersphere center while naturally segregating out-of-class samples based on their distance. By using Youden's J statistic, HyperCore can adaptively select pruning thresholds, enabling automatic, noise-aware data pruning without hyperparameter tuning. Our experiments reveal that HyperCore consistently surpasses state-of-the-art coreset selection methods, especially under noisy and low-data regimes. HyperCore effectively discards mislabeled and ambiguous points, yielding compact yet highly informative subsets suitable for scalable and noise-free learning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.