Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

POLO: Preference-Guided Multi-Turn Reinforcement Learning for Lead Optimization (2509.21737v1)

Published 26 Sep 2025 in cs.LG and cs.AI

Abstract: Lead optimization in drug discovery requires efficiently navigating vast chemical space through iterative cycles to enhance molecular properties while preserving structural similarity to the original lead compound. Despite recent advances, traditional optimization methods struggle with sample efficiency-achieving good optimization performance with limited oracle evaluations. LLMs provide a promising approach through their in-context learning and instruction following capabilities, which align naturally with these iterative processes. However, existing LLM-based methods fail to leverage this strength, treating each optimization step independently. To address this, we present POLO (Preference-guided multi-turn Optimization for Lead Optimization), which enables LLMs to learn from complete optimization trajectories rather than isolated steps. At its core, POLO introduces Preference-Guided Policy Optimization (PGPO), a novel reinforcement learning algorithm that extracts learning signals at two complementary levels: trajectory-level optimization reinforces successful strategies, while turn-level preference learning provides dense comparative feedback by ranking intermediate molecules within each trajectory. Through this dual-level learning from intermediate evaluation, POLO achieves superior sample efficiency by fully exploiting each costly oracle call. Extensive experiments demonstrate that POLO achieves 84% average success rate on single-property tasks (2.3x better than baselines) and 50% on multi-property tasks using only 500 oracle evaluations, significantly advancing the state-of-the-art in sample-efficient molecular optimization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.