Information-Theoretic Bayesian Optimization for Bilevel Optimization Problems
Abstract: A bilevel optimization problem consists of two optimization problems nested as an upper- and a lower-level problem, in which the optimality of the lower-level problem defines a constraint for the upper-level problem. This paper considers Bayesian optimization (BO) for the case that both the upper- and lower-levels involve expensive black-box functions. Because of its nested structure, bilevel optimization has a complex problem definition and, compared with other standard extensions of BO such as multi-objective or constraint settings, it has not been widely studied. We propose an information-theoretic approach that considers the information gain of both the upper- and lower-optimal solutions and values. This enables us to define a unified criterion that measures the benefit for both level problems, simultaneously. Further, we also show a practical lower bound based approach to evaluating the information gain. We empirically demonstrate the effectiveness of our proposed method through several benchmark datasets.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.