Wav2Arrest 2.0: Long-Horizon Cardiac Arrest Prediction with Time-to-Event Modeling, Identity-Invariance, and Pseudo-Lab Alignment (2509.21695v1)
Abstract: High-frequency physiological waveform modality offers deep, real-time insights into patient status. Recently, physiological foundation models based on Photoplethysmography (PPG), such as PPG-GPT, have been shown to predict critical events, including Cardiac Arrest (CA). However, their powerful representation still needs to be leveraged suitably, especially when the downstream data/label is scarce. We offer three orthogonal improvements to improve PPG-only CA systems by using minimal auxiliary information. First, we propose to use time-to-event modeling, either through simple regression to the event onset time or by pursuing fine-grained discrete survival modeling. Second, we encourage the model to learn CA-focused features by making them patient-identity invariant. This is achieved by first training the largest-scale de-identified biometric identification model, referred to as the p-vector, and subsequently using it adversarially to deconfound cues, such as person identity, that may cause overfitting through memorization. Third, we propose regression on the pseudo-lab values generated by pre-trained auxiliary estimator networks. This is crucial since true blood lab measurements, such as lactate, sodium, troponin, and potassium, are collected sparingly. Via zero-shot prediction, the auxiliary networks can enrich cardiac arrest waveform labels and generate pseudo-continuous estimates as targets. Our proposals can independently improve the 24-hour time-averaged AUC from the 0.74 to the 0.78-0.80 range. We primarily improve over longer time horizons with minimal degradation near the event, thus pushing the Early Warning System research. Finally, we pursue multi-task formulation and diagnose it with a high gradient conflict rate among competing losses, which we alleviate via the PCGrad optimization technique.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.