Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neuroprobe: Evaluating Intracranial Brain Responses to Naturalistic Stimuli (2509.21671v1)

Published 25 Sep 2025 in cs.LG and q-bio.NC

Abstract: High-resolution neural datasets enable foundation models for the next generation of brain-computer interfaces and neurological treatments. The community requires rigorous benchmarks to discriminate between competing modeling approaches, yet no standardized evaluation frameworks exist for intracranial EEG (iEEG) recordings. To address this gap, we present Neuroprobe: a suite of decoding tasks for studying multi-modal language processing in the brain. Unlike scalp EEG, intracranial EEG requires invasive surgery to implant electrodes that record neural activity directly from the brain with minimal signal distortion. Neuroprobe is built on the BrainTreebank dataset, which consists of 40 hours of iEEG recordings from 10 human subjects performing a naturalistic movie viewing task. Neuroprobe serves two critical functions. First, it is a mine from which neuroscience insights can be drawn. Its high temporal and spatial resolution allows researchers to systematically determine when and where computations for each aspect of language processing occur in the brain by measuring the decodability of each feature across time and all electrode locations. Using Neuroprobe, we visualize how information flows from the superior temporal gyrus to the prefrontal cortex, and the progression from simple auditory features to more complex language features in a purely data-driven manner. Second, as the field moves toward neural foundation models, Neuroprobe provides a rigorous framework for comparing competing architectures and training protocols. We found that the linear baseline is surprisingly strong, beating frontier foundation models on many tasks. Neuroprobe is designed with computational efficiency and ease of use in mind. We make the code for Neuroprobe openly available and maintain a public leaderboard, aiming to enable rapid progress in the field of iEEG foundation models, at https://neuroprobe.dev/

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.