MMPlanner: Zero-Shot Multimodal Procedural Planning with Chain-of-Thought Object State Reasoning (2509.21662v1)
Abstract: Multimodal Procedural Planning (MPP) aims to generate step-by-step instructions that combine text and images, with the central challenge of preserving object-state consistency across modalities while producing informative plans. Existing approaches often leverage LLMs to refine textual steps; however, visual object-state alignment and systematic evaluation are largely underexplored. We present MMPlanner, a zero-shot MPP framework that introduces Object State Reasoning Chain-of-Thought (OSR-CoT) prompting to explicitly model object-state transitions and generate accurate multimodal plans. To assess plan quality, we design LLM-as-a-judge protocols for planning accuracy and cross-modal alignment, and further propose a visual step-reordering task to measure temporal coherence. Experiments on RECIPEPLAN and WIKIPLAN show that MMPlanner achieves state-of-the-art performance, improving textual planning by +6.8%, cross-modal alignment by +11.9%, and visual step ordering by +26.7%
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.